【お知らせ】プログラミング記事の投稿はQiitaに移行しました。

正弦定理と三角形の面積

正弦定理を三角形の面積と関連付けます。

※ 記事執筆者自身による転載です。

【元記事】正弦定理と三角形の面積 - MathWills

目次

※ 図は MarkdownSVG を直接記述しています。詳細はこちらをご参照ください。

正弦定理

図 1 A B C 2R a b c

教科書でよく見る形の正弦定理は、円の直径との関係を含んだ形で記述されます。

\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2R \tag{1}

$2R$ によって円との関係が示されますが、それを取り除いた部分について考えます。

\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \tag{2}

三角形の面積

三角形の面積は 2 辺とその間の角から求まります。

$a$ と辺 $b$ とその間の角 $C$ に注目します。$a$ を底辺とすれば高さは $b\sin C$ となるため、$△ABC$ の面積が求められます。

図 2 A B C a b c b sin C

△ABC\text{ の面積}=\frac{ab\sin C}2 \tag{3}

同様に他の 2 辺とその間の角から面積が求められます。

△ABC\text{ の面積}=\frac{bc\sin A}2 \tag{4}
△ABC\text{ の面積}=\frac{ac\sin B}2 \tag{5}

(3) と (4) より

ab\sin C&=bc\sin A \\
a\sin C&=c\sin A
\therefore \frac{a}{\sin A}=\frac{c}{\sin C} \tag{6}

同様にして (3) と (5) より

\frac{b}{\sin B}=\frac{c}{\sin C} \tag{7}

(6) と (7) より (2) が示されました。

\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \tag{8}

つまり (2) は三角形の任意の 2 辺とその間の角から求めた面積が等しいことから導けます。

\frac{ab\sin C}2=\frac{bc\sin A}2=\frac{ac\sin B}2 \tag*{(3)(4)(5)}

直径との関係

図 3 A B C D E R a b c

$2R$ との関係が残っています。これを半径 $R$ に着目して導きます。

外接円の中心 $D$ から各頂点 $A,B,C$ への距離は半径 $R$ です。

※ 外接円の中心は外心で、重心とは別の概念です。

$△ADB$二等辺三角形のため、辺 $AB$ の中点を $E$ とすると、$△ADE$ は直角三角形となります。

円周角の定理より $∠ADB$$∠C$ の 2 倍となるため、$∠ADE$ はその半分で $∠C$ と等しくなります。これより辺の長さの等式が得られます。

R\sin C=\frac c2
\therefore 2R=\frac{c}{\sin C} \tag{8}

(2) と (8) から (1) が示されました。

\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2R \tag{1}

関連記事

二等辺三角形や円周角の定理を複素平面上で考えます。

参考

ピエモンテ語版の Wikipedia を参考にしました。

外積を使って説明されています。要点は以下の通りです。

\vec a+\vec b
&=\vec c \\
\vec a\times\vec c
&=\vec a\times(\vec a+\vec b) \\
&=\vec a\times\vec a+\vec a\times\vec b \\
&=\vec a\times\vec b \\
|\vec a\times\vec c|&=|\vec a\times\vec b| \\
ac\sin B&=ab\sin C \\
c\sin B&=b\sin C \\
\therefore\frac b{\sin B}&=\frac c{\sin C}

外積の長さは 2 本のベクトルが張る平行四辺形の面積を表します。その面積の半分が $\vec a,\vec b,\vec c$ によって表される三角形の面積となります。

今回の記事では外積を使わないで三角形の面積に着目しましたが、本質的には同じです。